

AISI M2 M2 DIN 3343

HS6-5-2C

C 0.90 Si 0.35 Mn 0.30 Cr 4.20 Mo 5.00 V 1.90 W 6.35

Steel properties

Physical properties

Standard high-speed steel grade. Its well-balanced alloy composition forms the basis of itshigh toughness and good cutting edge retention, rendering it suitable for a large variety ofapplications.

Standards

AISI M2	AFNOR Z85WDC V 06-05-04-02					
Thermal conductivity						
at °C	20	350	700			
W/(m • K)	32.8	23.5	25.5			

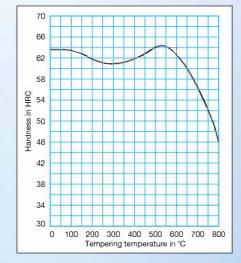
Applications

For all metal-cutting tools for roughing or finishing such as twist drills, diverse milling cutters, thread dies, broaches, reamers, countersinks, thread chasers, circular saw segments, shaping tools and woodworking tools. Also highly suitable for cold-forming tools such as cold extrusion rams and dies, as well as cutting and precision cutting tools, plastic moulds with elevated wear resistance and screws.

Heat treatment

Soft annealing °C	Cooling	Hardness HB
770 – 860	Furnace	max. 269

Stress-relief annealing °C Cooling 630 – 650 Furnace


1st pre-heating °C	2nd and 3rd pre-heating °C	Hardening ¹ °C	Quenching	Tempering °C	Hardness after tempering HRC
up to approx. 400 in an air-circulating					
furnace	a) 850	1190 – 1230	a) Saltbath, 550 °C	at least twice	64 – 66
	b) 850 and 1050		b) Oil c) Air	530 – 560	

For cold-forming tools with a complex geometry, a hardening temperature at the lower end of the quoted range is recommended. The stated hardening temperatures apply to saltbath hardening only. For vacuum hardening, we suggest a reduction of 10 °C to 30 °C.

Isothermal timetemperaturetransformation diagram

Tempering diagram

